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The linearized drag integral for bodies of

OF REVOLUTION

TBEORY

revolution
speeds is presented in a double-intewal form which is not
slender-body approximations but which reduces to the usual

at supersonic
based on
slender-body

expression in the proper limit. With the aid of a suitably chosen aux-
iliary condition, the minimum-external-wave-dragproblem is solved for
a transition section connecting two semi-infinite cylinders. The pro-
jectile tip is a special case and is compared with the Von I&?&n pro-
jectile tip. Calculations are presented which Indicate that the method
of anslysis gives good first-order results in the moderate supersonic
range.

IN’TROLUCTION

In making the slender-body approximation to the line=ized
supersonic-flow theory for bodies of revolution, a basic approximation
leads to replacing the axial source distribution with the cross-sectional-
area derivative. Slender-bdy theory therefore becomes llinesrin the
superposition sense for cross-sectional areas as weU as for sources
or fields in contrast to linear supersonic-flow theory which is hear
in the superposition sense for sources or fields but not for areas.
Making the slender-body approximation, however, eliminates a large part
of the Mach number dependence of the results. Lighthill (ref. 1) has
shown that this basic approximation, for sufficiently smoth bodies,
has the same mathematical order of accuracy as the linearized supersonic-
flow equation. Ward (ref. 2) has extended the generality of slender-
body theoryby presenting a drag expression which is valid for a body
with a finite slope at the base. Lighthill (ref. 3) has, at the price
of a large increase in complexity, modified slender-body theory to
include srea-derivative discontinuities at a finite number of points.

h 1935Von K&m& (ref. 4) determined the minimum-wave-drag pro-
. Jectile tip. Later Seaxs (ref. 5) ad Eaack (ref. 6) determined minimum-

wave-drag shapes for projectile tips and closed bodies of revolution

.
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subject to various combinations of auxiliary conditions of constant
length, constant caliber, and constant volume. The Von K&m&n tip and
the Se=s-Haack bodies me based on slender-body theory. In contrast
to the minimum-drag bodies of given volume, which are accepted as
reasonably good first-order results, the minimum-drag projectile tips
and open-nosed bodies which have been derived from slender-body theory
are subject to more severe restrictions on the rsnge and conditions for
va31dity. Busemann (ref. 7) pointed out this fact for the Von K&r&n
projectile tip in 1941. In the late 1930’s Ferrari made studies of the
minimum-drag projectile tip and length-caliber body problems. Recently,
Ferrari (refs. 8 and 9) has considered the length-caliber body and
ducted-body minimum-drag problems on the basis of linear theory without
resorting to slender-body approximations. He obtains source-distribution
functions which involve elliptic integrals that have to be treated
numerically.

This paper presents the linearized-drag integral for bodies of
revolution in a double-integral form which is not based on slender-
body approximations but which reduces to Ward’s drag expression in the
proper limit. With the aid of a suitably chosen auxiliary condition,
the minimum-extemal-wave-drag problem for a transition section con-
necting two semi-infinite cylinders is solved. The source distribution,
the minimum-wave drag, the slopes at the ends of the section, and the
radius at one intermediate point are obtained in terms of elementq
functions. The entire shape is given in an integral form amenable to
numerical evaluation.
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SYMBOLS

constant factor in source-distributionfunction, ft/sec

drag coefficient

drag, lb

source-distribution function

derivative of f with respect to its argument

free-stream Mach nuniber

radius in cylindrical coordinates

general radius of point on body

radius of downstream cylinder

.

.
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.
R2

. A’(x),A’’(x)

u

v~

Vx

x

%’

x

radius of

first and

upstream cy~nder

second derivatives of cross-sectional

free-stresm velocity, ft/sec

radial velocity, ft/sec

axial velocity, ft[sec

sxial distance in cylindrical.coordinates

position of first disturbance on control surface

3

axea

axial distsnce for general point on body

variation in derivative of source-distribution function

free-stresm density, slugs/cu ft

srbitrary constant

d- vsriables of integration

position on sxis where sources begin

disturbance potential

All distances are made dimensionless by measuring them in the units
of length of the transition section.

ANALYSIS

Drag Ihtegral

The linearized-flow equation for the case of axial symmetry is
(ref. k)

(1)
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where @ is the
free-stream Mach
(ref. 10)

J
@(x,r) = 0

m

NACATN 3~89

disturbance potential, 132= M2 - 1, and M is the
nuniber. The general solution of equation (1) is

J
x-j3r

f(x - ~r cosh u)du= -
f(~)d~

-w
ix - g)2 - pal-p

The corresponding disturbance velocities are

w
f

x- pr

J
f’(~)dk

— = vx(x,r) =
ax

f’(x - 13rcosh u)du= -
w

‘m ~~

(2)

(3)

snd

w J’
o

- @ cosh u)~ cosh udu= ~
J

‘-pr f’(~)(x - ~)d$—=Vr(X,r) =-
&

f’(x
m -m ~x.. E)2- p2r2

(4) “

The general solution is interpreted physicaUy as the disturbance
potential of a distribution of axial sources. The source-distribution
function f(~) is fixed by satisfying the boundary condition that the
body surface be a stream surface.

Applying the momentum and continuity theorems to the fluid within
a cylindrical surface of radius equal to the radius of the downstream
cylinder RI (hereafter referred to as the control surface) and using
the fact that free-stream conditions prevail at the two ends of the
cylinder, x = @ andx=
(ref. 4)

-w, yield the usual expression for the drag

J
m

D=-% pRlvx(x,Rl)vr(x>Rl)dx (5)
-m

If a position x = L on the control surface is chosen so that, for
x > L, either Vr or Vx vanishes on the control surface, and if



NJX!Am 3189 5
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~ is the position of the first disturbance on the control surface,
equation (~) reduces to

.

I
L

D=-% ~Rlvx(x,R~)vr(x,Rl)ti (6)
X.

Substituting expressions (3) and (4) for the velocities into eqution (6),
Were E.o=TIo=~- @ll, the position on the axis where the sources

begin, yields

or (7)

The basic slender-body approximation reduces the integral over ~.
in equation (7) to f(x). The use of equation (4) for small values of r

dr Vr
and the boundary condition ~ = ~ gives f(x) proportional to the

axial derivative of the cross-sectional area. The slender-body approxi-
mation thus reduces the integral of equation (8) to a double integral
(over x snd ~). h principle, the integz@.in eqwtion (8) maybe
reduced to a double integral over ~ and ~ by interchanging the order
of integration and performing the integration over x. When this process
is attempted in equation (8), however, the integration over x involves
elliptic integrals smd no essential advantage is gained.

However, the drag integral msy be reduced to a double integral in
the following msmner. Equation (8) is rewritten with the d_vsri-
ables ~ snd ~ interchanged. Addition of the interchanged and
original_expressions and division by 2 yield
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●

@ the slender-body approximation, equation (K?) reduces to Ward’s
drag expression as follows. Use of the expression for the radial

. velocity (eq. (4)) for small values of r and the boundsry condition

f(x) =&A’(x) (13)

where A’(x) is the axial derivative of the cross-sectional
small values of RI, ml Wbe neglected in the limits of
integrals in equation (12) sad the cosh-l factor msy be approximated

area. For
the

Simple manipulation, based on the assumption that A’(E) is continuousA
and A’(~o) = 0, gives the Ward drag formula

.

(15)

Minimum-Drag Problem

The problem of determining the shape of a transition section con-
necting two semi-infinite cylinders for minimum external wave drag msy
be formulated in the following wsy. (See fig. 1.) The upstream and
downstream semi-infinite cy13ridersere of radius R2 and Rl, respec-

tively. The length of the transition section is taken as
which all distances are measured. The cylinder of radius

● as the control surface.

the unit in
RI is chosen

.
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Figure 1 is drawn for the case R2 < R1. However, the statement
df the problem is the same as for R2 > R1 since only the appropriate

changes in sign occur. Equation (1.2)for the drag becomes

D‘“’$;R’l;pf’(~)f’(~’co’h-’

(16)

The auxi13a~ condition for the minimum-wave-drag problem is the
requirement that the points x = 1, r = RI and x = 0, r = R2 be

on the sane stream surface. b terms of mass flow this condition
requires that the free-stream mass flow between the control cylinder
of radius RI md the upstream cylinder of rsdius R2 equals the mass
flow
that

.

-’

out of the control cylinder between x = P(R1 - R2) and X = 1;
is,

PUfi(R12- R22) =
r

~pRlvr(x2Rl)ti = Const~t (17)
p(R~-R2)

Equation (18) is a particularly

*

.

(‘R~2 -“z R22) = Constant (18)

convenient form of the auxiliary
condition in that the source-distributionfunction is the only unknown
involved. A direct integration of the usual boundary condition would
lead to an auxiliary condition involtig, in addition, the unknown
shape of the section. Without further approximations, the mlnimum-
drag problem would be unmsmageable. It appesrs impossible to obtain
an auxiliary condition of constant volume involving the source-distribu-
tion function as the only unknown.

fiterchanging the order of integration in the left member of equa-
tion (18) and integrating over x field

.
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An integration by parts, with f(-~R2) = 0, yields

J’
l-pRl f(q)drj = A = constant (23)

-N2 (~ - ~)~1 - # - @R~2

The integral equation (23) is the ssme equation that appears in the
minimum-induced-drag problem in Wl?ting-line airfoil theory.

The solution of the integral equation

r F(y)dy
= Constant

a~-Y

F(y) =
Cy+cl

~(b - y)(y - a)

Therefore, the solution of equation (23) is

/
f(q) = (q + cl) 1+‘R1-7 (24)

q+fmp

The condition that f(-pR2) = O requires that Cl = C~R2; therefore,

The source-distribution function for,minimum wave drag is part of an
el~pse. The constant C is fixedby satisfying the auxiliary condi-
tion, eqpation (19). The final result for the source-distribution
function for minimum wave drag is

4U(R12 - R22)
f(~) = j(q + ~R2)(l + j3Rl- q) (26)

Yc(l - ~Rl + @2)(l + 3~Rl + ~R2)

Figure 2 which has an arbitraq vertical scale shows the source distribu-
tion corresponding to the transition section of minimum wave drag.

.

.
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Minimum-DragShape :

The expr.easionfor the tinhum-drag shape is analogous to the auxiliary condition given by
P

equation (17) except that a control s-urfaceof arbitrary radius R is used, where R is the ~

radius of the section at x = X (see fig. 1); the shape is givenby

?

&

@Jfi(R2- R22) = i%PRVr(X,R)dX—.
d13(R-R2) -

x -m
= *P

‘r
p(R-R2) “pa

Interchangingthe order of integration,integrating
distributionfunctionyield

(27)

over x, and substitutingthe source.

Since all the radii in
shapes for which, at a
the G6thert similarity

(28)

eqyation (28) are multipliedby p, one calculationgives a family of
given value of X, pi(x) = constant. Thusthe minimum-drag shape obeys
rule (ref. il.).

At the general point (X,R), the integral in equation (28) involves elliptic integrals and
cannotbe evaluated in eleinentazyform. However, at one particularvalue of X, corresponding
to the center of the source-distributionellipse, the integral reduces to elementary functions.
Thus, for

x_l+&l-pR2

2



(&%2+ F%12)(1+-WI + fmJ2- 8P4R1*22

P
N

@2 . (a)

[
2 (l+ BR1+PR2)2- 2(#R~2 + #R29

Eqmtion (28) my be solved by numerical-graphicalmethods. E& a change of variable of
the form

5=
l+@l-w2+l+ml+ @32

2
Cos e

2

equation (28) is converted into the following form suitable for numerical integration:

[ 16.12(=l@-(l+ml-m2)

4B2(R12-R#)(l+ 13R1+Im2)

1’

l+pRl+pR2

,62(R2-R22)= /(
Cc@.,x-’+@;

-*2- 1+ W1+P2C069.2 -B%% (X)
2 )

fi(~-~l+BR2)(l+3j?Rl+~2] ~

The slope of the trsrsition sectidn at the general point (X,R) is found by differentiating
equation (28j. The result is

-1

(31)

, ,

II



NACA TN 3189 13

.
For the general point, equation (31) is not integrable in elementa~
form. However, at the downstream end of the section (x = 1, R = Rl)

* it msy be integrated

[1d(~) =

dx X=l
R=R1

directly. The result is

.
-L

(32)

At the upstream end of the section, equation (31) maybe evaluated by
a suitable limiting process. For exsmple, if R = R2 and X = e
(where E is a small quantity), the integrals in equation (31) msybe
evaluated if ~ is neglected in comparison with quantities of the
order of unity. After the evaluation, e is a~owed to vanish, and
the result is

FL@7:22 [
= 1+

. @l +-@l + jmz(p%~a- P*22)J
(33)

. For R2 = O (the projectile tip}, the front slope is equal to the
slope of the Mach cone. The back slope is different from zero for
RI + R2.

Minimum Wave Drag

The expression for the minimum wave drag is obtained by inserting
the source-distribution function (eq. (26)) into the drag integral
(eq. (16)). The expression for the drag of the transition section is

and the drag coefficient (based on the area of the section projected on
a plane normal to its axis) is

k R12 - R22.
CD = I (35)

(1 - @~ + ~R2)(l + 3@~ + ~R2)
.

,
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Reversibility
.

The results for the reverse-flow case msy be obtained formally
from the preceding direct-flow case by interch~ing RI snd R2. If,
in addition, X is replacedby 1 - X, the X-station willbe measured
from the same end of the configuration. The transition-section-shape
expression (eq. (28)) can be shown to be an invariant relation between
X and R under the transformation

R~+R2

R2 +Rl

X+l - x

Since the present analysis is a linear treatment, the reversibility of
the minimum-drag shape cannot be considered as established to an order
higher than the first.

The drag coefficient (eq. (35)) is not symmetrical in RI and R2.

Xowever, ~%D is symmetricalto the first order in the small quanti-
ties j3Rl and @R2 or, if PR1 and j3R2 me not small, ~%D iS
symmetrical to the first order in the quantities pRl - ~R2 and
PR2 - $R1. The minimum wave drag thus is the ssme to the first order
in the appropriate small quantities for the direct-flow and reverse-
flow cases.

DISCUSSION OF RESULTS

The drag integral (eq. (I-2)) presented in ttis paper depends upon
the source-distributionfunction in the same wsy (except for sli&tly
different weights of the kernel functions) that the slender-body drag
expression (eq. (15)) depends upon the cross-sectional-areaderivative.
Since bodies with area-derivativediscontinuities cmbe generatedby
continuous source distributions, equation (12) gives fintte drag for
cert~in types of bodies (for example, bodies with shoulders forward of
the base) for which the usual slender-body drag expression diverges.
The drag integral presented herein is thus applicable to a larger class
of bodies thm the Ward drag expression.

Some indication of the range of validity of equation (I-2)is given
by a comparison of the values of drag calculated by various methods for
several cones. Figures 3(a), 3(b), ad 3(c) present cone drag coeffi-
cients plotted against @l for semtvertex cones of 5°, 10°, and 15°,
respectively. The drags are calculatedly the following methods:

.

.—

.

.
*
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lkthod A - The drag integral (eq. (lZ!)) with mass-flow continuity
(eq. (17) with R2 = O) used as the boundary condition. Since the con-
tinuity condition is used in deriving the drag integral, this method
uses a consistent boundary condition.

~thod B - The solution of the linearized supersonic-flow equa-
tionfor a cone (f’(~) = Constsnt) used with the exact boundary condi-

( Vr

)tion ~ = —
M U+vx

and the exact pressure

called the exact linear method. van Dyke
drSgS by this methcd.

lkthod C - The exact characteristics
givenby reference 13.

Wthod D - The drag
Vr

tion ~ = —.
dx

This
U+vx

Each of the figures also

equation. This method maybe

(ref. 12} has presented cone

method for conical flow as

integral (eq. (M?)) with the boundary condi-

method was used only for the 5° cone.

shows the drag of the tinimum-drag projectile
tip of the ss& thickness ratio as was determined in the present analysis
(curve I in fig. 3).

Figures 3(a), 3(b), and 3(c) show that the drag integral with the
continuity boundary condition (method A) gives cone drags closer to
the exact value (method C) than the exact linear method (method B) for
values of @L less than approximately 0.30. From a comparison of
methods A and D for the so cone, the divergence of the cone drag calcu-
lated by method A as @l~l.O is seen to be caused by the use of the
mass-flow continuity boundazy condition. These results indicate that
equation (12) with equation (17) as the boundary condition gives good
first-order results for Mach m.uibersabove the transonic range and less
than the Mach nuniberat which the tangent of the Mach angle is less
than approximately three times the slope of the body, that is, a moderate
supersonic range.

Projectile tip (R2 = O).- Figure 4 presents two fsmilies of minimum-

drag projectile-tip shapes ~pl = 0.2 and 0.4) calcul.at edbyequa-
tion (30). The Von K&-&II projectile tip and the limiting case @l = l-o
are shown for comparison. The Mach number and thickness-ratio dependence
are related by the fact that the m$nimum-drag shape obeys the G&hert
similarity rule (ref. H-). The slope at the base varies from zero to
the cone slope as pR~ vsries from O to 1.0.

fiboth the Von K&m& analysis and the present analysis the basic
assumptions of Linearized theory are strongly violated at the nose of
the projectile tip. Specific results of either analysis at the nose
therefore cannot be accepted with confidence. Eowever, inasmch as
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linear theory often qusMtatively predicts correct trends even outside
its range of quantitative validity, it is interesting to note that in
both analyses the nose of the minimum-drag projectile tip is as blunt
as the analysis will allow (infinite slope for the Von K&&m tip and
tangent to the Mach cone in the present analysis). It is probably
true that the exact shape of a projectile tip for minimum wave drag
has a blunt nose.

Figure 5 presents the ratio of the minimum-wave-drag coefficient
based on the base area to the Von K&m&I drag coefficient as a function
of ~R1. The ratio has a minimum value at 13R1= 0.33 smd diverges

as @l+l.o. The results for the cone discussed previously suggest
that the drag diverges as ~R1-+1.O because of the use of mass-flow

continuity (eq. (17)) for the boundsry condition and that the results
are reasonably good for BR1 less than about 0.3.

General case.- Figure 6 presents the radius at an intermediate
point and the slopes at the two ends of the .F@nimum-external-wave-drag
transition section for four configurationswith @~ - pR2 = 0.4. Fl.g-

presents these three qutities for five configurations for which
1% = 0.05. Equations (29), (32), md (33) indicate that for

J 1- 3(W1 - P%)

is a reverse curve lying within the truncated cone connecting the two
cylinders for a distance downstream of the no”sewhich increases as
i3Rl- 13R2 decreases. The entire shape was cal.culatedby equation (30)
for the case pRl - PR2 = 0.05 md PR1 + PR2 = 0.11$, which corre-
sponds to the minimum front slope for ~Rl - ~R2 = 0.05 (shown in

fig. 7). This reverse-curve effect is more pronounced in the range
of small values of pRl - @12, the range where the linearized treatment
is certainly correct.

For a comparison with the general case, the drag of a truncated-
cone section for f3Rl- ~R2 =0.05, @l+13R2 = 0.u8, and ~ = 1 w-

calculated by the method of reference 14. The truncated-cone drag
coefficient (0.0228) is 18 percent higher than the minimum drag
coefficient (0.0193).

CONCLUDING REMARKS

The drag integral for bodies of revolution at supersonic speeds is
presented in a double-integral form depending explicitly upon the
source-distributionfunction. The drag integral is applicable to a

.

.

*

.
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.

larger C1*S of bodies than the usual slender-body drag expression and
reduces to the Ward drag expression in the proper limit. Results for
cones indicate that the drag integral with mass-flow continuity as the
boundary condition gives good first-order results in the moderate
supersonic range.

The minimum-wave-drag problem for a transition section connecting

two semi-infinite cylinders is solved with the aid of a suitably chosen

auxiliary condition. The source distribution, the minimum drag, the

slopes at the two ends of the section, and the radius at an intermediate

point are obtsined in terms of elementary functions. The entire shape

is obtained in am integral form amenable to munerical evaluation. The

minimum-drag shape obeys the G6thert similarity rule. The minimum-drag

shape and the minimm dxag me unchanged to the first order when the

flow direction is reversed. The projectile tip is a special case and

is compared with the Von K&m&n projectile tip.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Lsngley Field, Vs., kch 1, 1954.



18 .

The integral of

APPENDIX

INTEGRATION IN EQUATION (U)

equation (n) is

(x - ~ + x -..q)dx

NACA TN 3183

.

.

(Ad

where the lower limit is the larger of the two quantities ~+pRlor
~ + @l. The equation may be evaluated in the following manner. In
order to convert the radicand in the denominator of the integrand into
a qu~atic function of the squae of the integration variable, the
variable is changed by using

g+llx.s-—
2

Substitution of equation (A2) into equation (Al) gives

(M)

where SL-”and S() are the appropriate limits for the variable S.
Since the numerator of the integrand in eqmtion (A3) is an odd
polynomial in

new variable

S, considerable simplification is effectedby taking a

z proportional to S2, such that

52
()
E-72=z+— + j32R12
2

(Ah)

.-

. ——

.
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Substituting equation (Ak) into equation (u) yields

or

19

(A5)

[1 (x- 5)(X- q) - $~,~+,R,=@+,~,,,-,,(L - $)(L - TI)- @R12
I = cosh-l

!3Rl(~- q)

(A6)
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Figure 2.- Source distribution (sxbitraryvertical scale) corresponding
to transitionsection of finimum drag. Ellipse of which the distribu-
tion is a part is shown by dashed curve.
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